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Compute the summation of an 
array of integer numbers

Suppose that we are given the problem P ≡ “add n given numbers.”

Then “add numbers 1, 2, 3, 4, 5, 6, 7, 8” is an instance of size = n = 8 
of the problem P.

Let us now focus on all instances of size 8, that is, instances of the 
form “add numbers a1;a2;a3;a4;a5;a6;a7;a8.”

The fastest sequential algorithm for computing the sum

Sum = 0

for (i = 1; i ≤ 8; i++)

sum += ai

requires Tseq(8) = 7 steps    →     Tseq(n) = O(n)
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Compute the summation of an 
array of integer numbers
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Compute the summation of an 
array of integer numbers

Sum = 0

For j = 0 to j < n/2 do parallel
For i = 0 to i < 2 do

s[j*2+i] = a[j*2+i]

For i = 0 to i<log(n) do
For j = 0 to j <n/(2(i+1)) do in parallel

s[j * 2(i+1)] += s[j * 2(i+1)+2i]

sum = s[0]
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Compute the summation of an 
array of integer numbers

In general, instances of size n of P can be solved in 
parallel time Tpar = O(logn) 

speedup is S(n) = Tseq(n) / Tpar(n) = O( n/logn ).

Cost C(n) = n*O(logn) = O(nlogn)

E(n) = Tseq(n) / C(n) = O(n / (nlogn)) = O(1/logn) < 1
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Reducing the Processors Number to 
Reach to More Efficient Parallel 
Algorithm
Ep(n) = Cs(n)/Cp(n) = 1

Cs(n)/Cp(n) = 1 → Cs(n) = Cp(n)

1*Ts(n) = p*Tp(n) → p = Ts(n)/Tp(n)

In the summation problem:

p = Ts(n)/Tp(n) = n/log(n)

p = n/log(n)
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Number of processors (Number of sub-problems) = p = n/log(n) = 16 / 4 = 4

Size of sub-problems  = n / p = n/(n/log(n)) = log(n) = 16 / 4 = 4

Sub-problems no. j start from j*log(n) to ((j+1)log(n) -1)



More Efficient Algorithm
Sum = 0

For j = 0 to j < n/log(n) do in parallel

s[j] = 0

For i = j*log(n) to i < ((j+1)*log(n)) do
s[j] += a[i]

End For

End par

For i = 0 to i< log(n/log(n)) do

For j = 0 to j <n/(2(i+1)) do in parallel
s[j * 2(i+1)] += s[j * 2(i+1)+2i]

End par

End For

sum = s[0]
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More Efficient Algorithm
In general, instances of size n of P can be solved in 
parallel time Tpar = O(logn) with number of 
processors equals p = n/log(n)

speedup is S(n) = Tseq(n) / Tpar(n) = O( n/logn ).

Cost C(n) = (n/log(n))*O(logn) = O(n)

E(n) = Tseq(n) / C(n) = O(n / n) = 1
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Prefix Sums
Given the sequence of elements X = {x0, x1, x2, …, xn-1 } and 
an associative operation ⨁, assume sj is defined as:

Sj = x0⨁ x1 ⨁ x2⨁ …⨁ xj

The sums Sj = x0⨁ x1 ⨁ x2⨁ …⨁ xj are called the prefix 
sums in which j =0,2, ... ,n-1. In other words, Sj=Sj-1 ⨁ xj for 
i = 1, ... ,n-1 with S0=X0.

In general, the prefix sums problem is to compute the n 
quantities with the following properties:
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Sequential Prefix Sums

Example:

Given the operation + and 
the set

X = {3,2,1,4,5,6,0} the 
prefix sums of X will be

S = {3,5,6,10,15,21,21} as 
illustrated in the figure.

This represents the 
process of carrying out 7 
additions.
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Sequential Prefix Sums
s0 = a0

For i = 1 to n-1 do
si = si-1 + ai

Ts(n) = O(n)
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Parallel Prefix 
Sums Algorithm
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Parallel Prefix Sums Algorithm
For j = 0 to j < n do in parallel

Pj: s[j] = a[j]

End par

For i = 0 to i < log(n) do

For j = 2i to j < n do in parallel

Pj: s[j] = s[j-2i ]+ s[j]

End par

End For
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Parallel Prefix Sums Algorithm
In general, instances of size n of P can be solved in parallel time 
Tpar = O(logn) 

speedup is S(n) = Tseq(n) / Tpar(n) = O( n/logn ).

Cost C(n) = n*O(logn) = O(nlogn)

E(n) = Tseq(n) / C(n) = O(n / (nlogn)) = O(1/logn) < 1
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