Parallel Programming

Lec 2

Books

Chapman & Hall/CRC Numerical Analysis and Scientific Computing

Parallel Algorithms

Henri Casanova, Arnaud Legrand, and Yves Robert

Undergraduate Topics in Computer Science

Roman Trobec · Boštjan Slivnik Patricio Bulić · Borut Robič

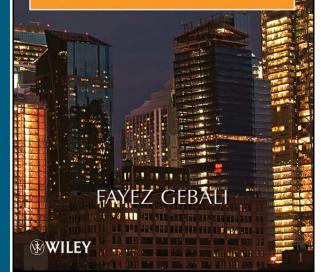
Introduction to Parallel Computing

From Algorithms to Programming on State-of-the-Art Platforms

D Springer

Wiley Series on Parallel and Distributed Computing • Albert Zomaya, Series Editor

ALGORITHMS AND PARALLEL COMPUTING



PowerPoint

http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14779

Benha Ur	niversity	Staff Settlef: De: Ahmed Hassan Ahmed Abu El Atta (
Benha University Home	You are in: <u>Home/Courses/Co</u> Ass. Lect. Ahmed Has Compilers	ompilers Back To Courses ssan Ahmed Abu El Atta :: Course Details:
النسفة العربية		earliest tibe Learlies bbc
My C.V.	Course name	Compilers
About	Level	Undergraduate
Courses	Level	f
Publications	Last year taught	2018
nlinks(Competition)		Not Uploaded
Theses	Course description	
Reports		line line line line line line line line
Published books	Course password	
Workshops / Conferences		
Supervised PhD	Course files	add files
Supervised MSc	Course URLs	add URLs
Supervised Projects	Course assignments	add assignments
Education		
anguage skills	Course Exams &Model Answers	add exams
Academic Positions		(edi

Compute the summation of an array of integer numbers

Suppose that we are given the problem $P \equiv$ "add n given numbers."

Then "add numbers 1, 2, 3, 4, 5, 6, 7, 8" is an instance of size = n = 8 of the problem P.

Let us now focus on all instances of size 8, that is, instances of the form "add numbers $a_1;a_2;a_3;a_4;a_5;a_6;a_7;a_8$."

The fastest sequential algorithm for computing the sum

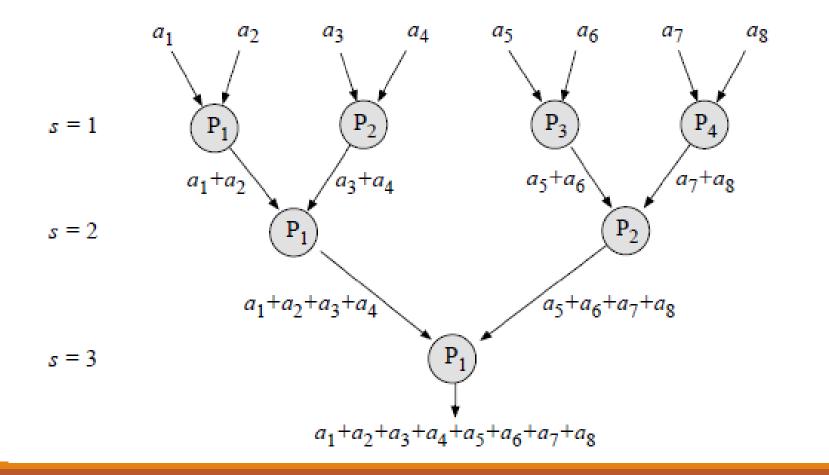
Sum = 0

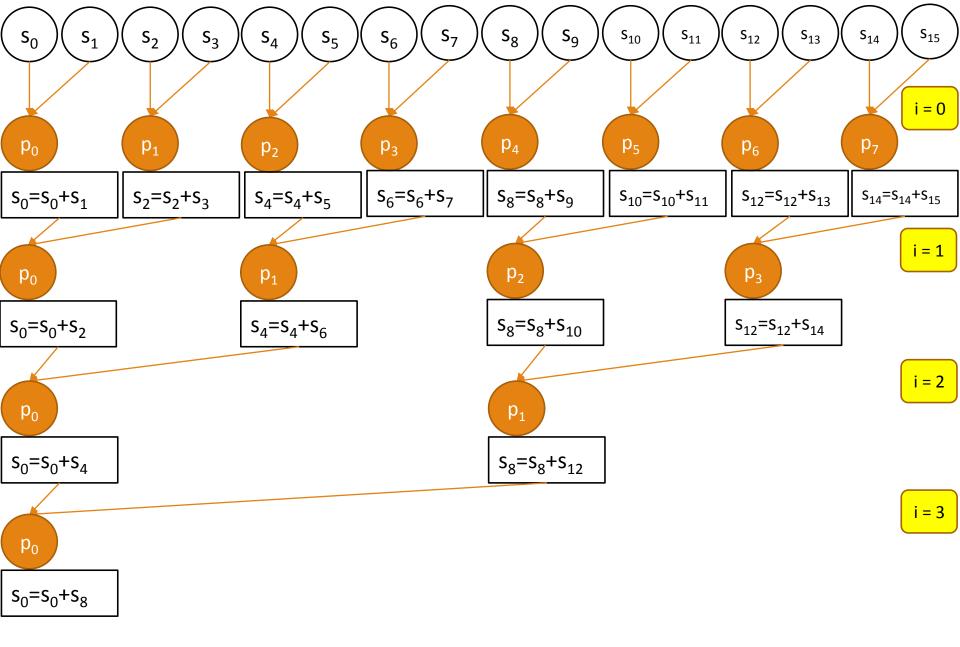
for $(i = 1; i \le 8; i++)$

 $sum += a_i$

requires $T_{seq}(8) = 7$ steps $\rightarrow T_{seq}(n) = O(n)$

Compute the summation of an array of integer numbers





Compute the summation of an array of integer numbers Sum = 0For j = 0 to j < n/2 do parallel For i = 0 to i < 2 do s[i*2+i] = a[i*2+i]For i = 0 to i < log(n) do For i = 0 to $i < n/(2^{(i+1)})$ do in parallel $s[i * 2^{(i+1)}] += s[i * 2^{(i+1)}+2^{i}]$ sum = s[0]

Compute the summation of an array of integer numbers

In general, instances of size n of P can be solved in parallel time $T_{par} = O(logn)$

speedup is $S(n) = T_{seq}(n) / T_{par}(n) = O(n/logn)$.

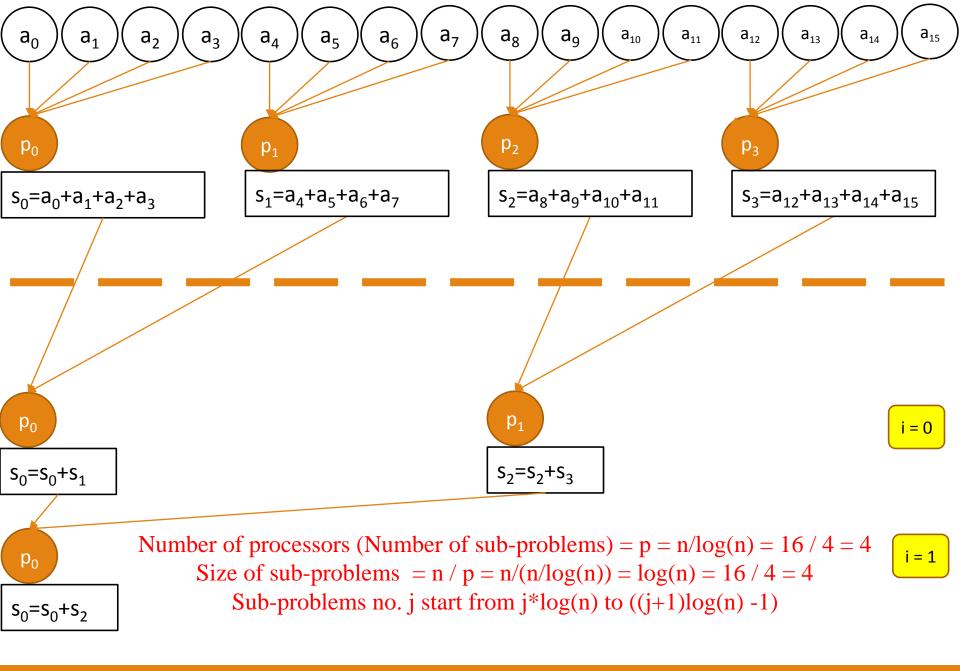
Cost C(n) = n*O(logn) = O(nlogn)

 $E(n) = T_{seq}(n) / C(n) = O(n / (nlogn)) = O(1/logn) < 1$

Reducing the Processors Number to Reach to More Efficient Parallel Algorithm

$$\begin{split} & E_p(n) = C_s(n)/C_p(n) = 1 \\ & C_s(n)/C_p(n) = 1 \\ & 1 \Rightarrow C_s(n) = C_p(n) \\ & 1 T_s(n) = p^*T_p(n) \Rightarrow p = T_s(n)/T_p(n) \end{split}$$

In the summation problem: $p = T_s(n)/T_p(n) = n/log(n)$ p = n/log(n)



More Efficient Algorithm

For j = 0 to j < n/log(n) do in parallel

s[j] = 0For i = j*log(n) to i < ((j+1)*log(n)) do s[j] += a[i]End For

End par

```
For i = 0 to i < log(n/log(n)) do
For j = 0 to j < n/(2^{(i+1)}) do in parallel
s[j * 2^{(i+1)}] += s[j * 2^{(i+1)}+2^i]
End par
```

End For

sum = s[0]

More Efficient Algorithm

In general, instances of size n of P can be solved in parallel time $T_{par} = O(logn)$ with number of processors equals p = n/log(n)

speedup is $S(n) = T_{seq}(n) / T_{par}(n) = O(n/logn)$. Cost C(n) = (n/log(n))*O(logn) = O(n)

 $E(n) = T_{seq}(n) / C(n) = O(n / n) = 1$

Prefix Sums

Given the sequence of elements $X = \{x_0, x_1, x_2, ..., x_{n-1}\}$ and an associative operation \bigoplus , assume s_i is defined as:

$$S_j = X_0 \bigoplus X_1 \bigoplus X_2 \bigoplus \dots \bigoplus X_j$$

The sums $S_j = x_0 \bigoplus x_1 \bigoplus x_2 \bigoplus ... \bigoplus x_j$ are called the prefix sums in which j = 0, 2, ..., n-1. In other words, $S_j = S_{j-1} \bigoplus x_j$ for i = 1, ..., n-1 with $S_0 = X_0$.

In general, the prefix sums problem is to compute the n quantities with the following properties:

$$S_{1} = x_{1}$$

$$S_{2} = x_{1} \oplus x_{2}$$

$$S_{3} = x_{1} \oplus x_{2} \oplus x_{3}$$

. . .

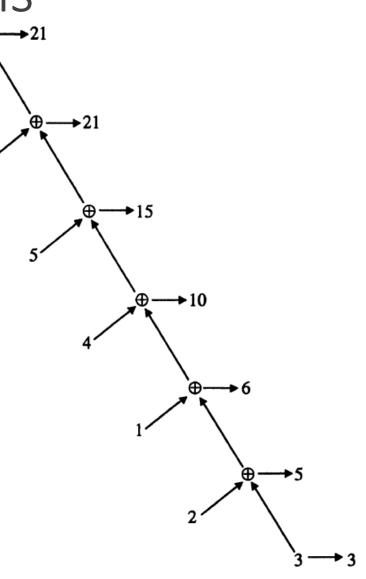
 $\mathbf{S}_{n} = \mathbf{x}_{1} \oplus \mathbf{x}_{2} \oplus \mathbf{x}_{3} \oplus \ldots \oplus \mathbf{x}_{n}$

Sequential Prefix Sums

Example:

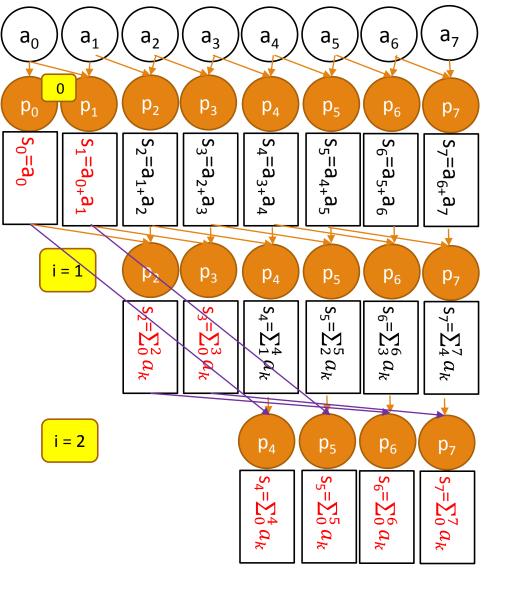
- Given the operation + and the set
- X = {3,2,1,4,5,6,0} the prefix sums of X will be
- $S = \{3,5,6,10,15,21,21\}$ as illustrated in the figure.

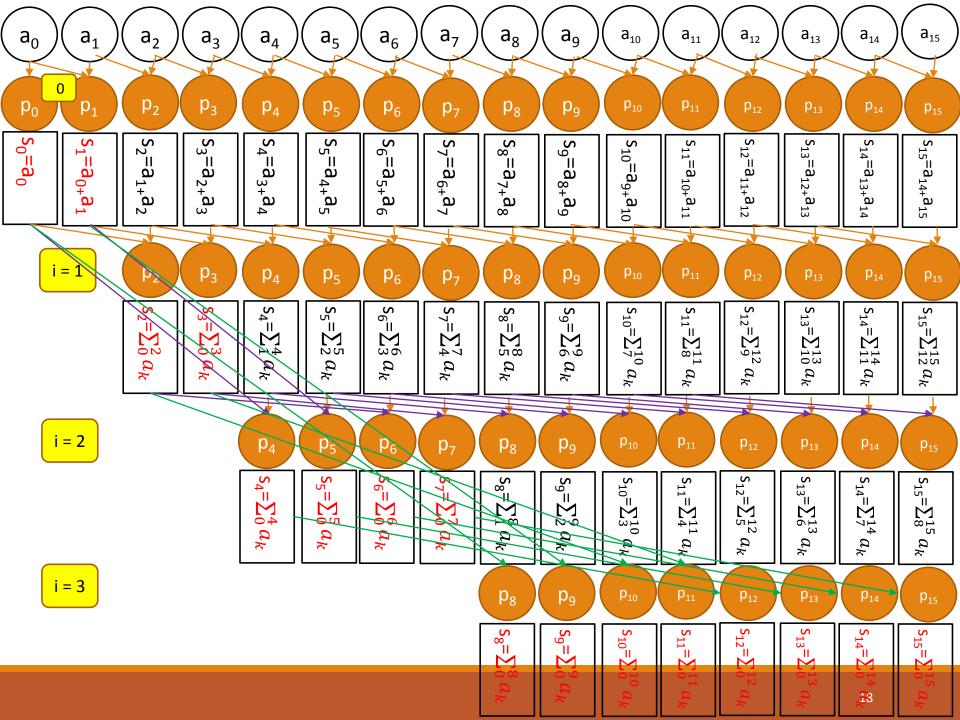
This represents the process of carrying out 7 additions.



Sequential Prefix Sums $s_0 = a_0$ $T_s(n) = O(n)$ For i = 1 to n-1 do $s_i = s_{i-1} + a_i$

Parallel Prefix Sums Algorithm





Parallel Prefix Sums Algorithm

- For j = 0 to j < n do in parallel
 - Pj: s[j] = a[j]

End par

For
$$i = 0$$
 to $i < log(n)$ do
For $j = 2^{i}$ to $j < n$ do in parallel
Pj: $s[j] = s[j-2^{i}] + s[j]$
End par

End For

Parallel Prefix Sums Algorithm

- In general, instances of size n of P can be solved in parallel time $T_{par} = O(logn)$
- speedup is $S(n) = T_{seq}(n) / T_{par}(n) = O(n/logn)$.
- Cost C(n) = n*O(logn) = O(nlogn)
- $E(n) = T_{seq}(n) / C(n) = O(n / (nlogn)) = O(1/logn) < 1$

