
Parallel
Programming
Lec 2

1

Books

2

PowerPoint
http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14779

3

Compute the summation of an
array of integer numbers

Suppose that we are given the problem P ≡ “add n given numbers.”

Then “add numbers 1, 2, 3, 4, 5, 6, 7, 8” is an instance of size = n = 8
of the problem P.

Let us now focus on all instances of size 8, that is, instances of the
form “add numbers a1;a2;a3;a4;a5;a6;a7;a8.”

The fastest sequential algorithm for computing the sum

Sum = 0

for (i = 1; i ≤ 8; i++)

sum += ai

requires Tseq(8) = 7 steps → Tseq(n) = O(n)

4

Compute the summation of an
array of integer numbers

5

6

s0 s1

p0

s2 s3

p1

s4 s5

p2

s6 s7

p3

s8 s9

p4

s10 s11

p5

s12 s13

p6

s14 s15

p7

s0=s0+s1 s2=s2+s3 s4=s4+s5 s6=s6+s7 s8=s8+s9 s10=s10+s11 s12=s12+s13 s14=s14+s15

i = 0

p0

s0=s0+s2

p1

s4=s4+s6

p2

s8=s8+s10

p3

s12=s12+s14

i = 1

p0

s0=s0+s4

p1

s8=s8+s12

i = 2

p0

s0=s0+s8

i = 3

Compute the summation of an
array of integer numbers

Sum = 0

For j = 0 to j < n/2 do parallel
For i = 0 to i < 2 do

s[j*2+i] = a[j*2+i]

For i = 0 to i<log(n) do
For j = 0 to j <n/(2(i+1)) do in parallel

s[j * 2(i+1)] += s[j * 2(i+1)+2i]

sum = s[0]

7

Compute the summation of an
array of integer numbers

In general, instances of size n of P can be solved in
parallel time Tpar = O(logn)

speedup is S(n) = Tseq(n) / Tpar(n) = O(n/logn).

Cost C(n) = n*O(logn) = O(nlogn)

E(n) = Tseq(n) / C(n) = O(n / (nlogn)) = O(1/logn) < 1

8

Reducing the Processors Number to
Reach to More Efficient Parallel
Algorithm
Ep(n) = Cs(n)/Cp(n) = 1

Cs(n)/Cp(n) = 1 → Cs(n) = Cp(n)

1*Ts(n) = p*Tp(n) → p = Ts(n)/Tp(n)

In the summation problem:

p = Ts(n)/Tp(n) = n/log(n)

p = n/log(n)

9

10

a0 a1

p0

a2 a3 a4 a5

p1

a6 a7 a8 a9

p2

a10 a11 a12 a13

p3

a14 a15

s0=a0+a1+a2+a3

i = 0p0

s0=s0+s1

p1

s2=s2+s3

i = 1p0

s0=s0+s2

s1=a4+a5+a6+a7 s2=a8+a9+a10+a11 s3=a12+a13+a14+a15

Number of processors (Number of sub-problems) = p = n/log(n) = 16 / 4 = 4

Size of sub-problems = n / p = n/(n/log(n)) = log(n) = 16 / 4 = 4

Sub-problems no. j start from j*log(n) to ((j+1)log(n) -1)

More Efficient Algorithm
Sum = 0

For j = 0 to j < n/log(n) do in parallel

s[j] = 0

For i = j*log(n) to i < ((j+1)*log(n)) do
s[j] += a[i]

End For

End par

For i = 0 to i< log(n/log(n)) do

For j = 0 to j <n/(2(i+1)) do in parallel
s[j * 2(i+1)] += s[j * 2(i+1)+2i]

End par

End For

sum = s[0]

11

More Efficient Algorithm
In general, instances of size n of P can be solved in
parallel time Tpar = O(logn) with number of
processors equals p = n/log(n)

speedup is S(n) = Tseq(n) / Tpar(n) = O(n/logn).

Cost C(n) = (n/log(n))*O(logn) = O(n)

E(n) = Tseq(n) / C(n) = O(n / n) = 1

12

Prefix Sums
Given the sequence of elements X = {x0, x1, x2, …, xn-1 } and
an associative operation ⨁, assume sj is defined as:

Sj = x0⨁ x1 ⨁ x2⨁ …⨁ xj

The sums Sj = x0⨁ x1 ⨁ x2⨁ …⨁ xj are called the prefix
sums in which j =0,2, ... ,n-1. In other words, Sj=Sj-1 ⨁ xj for
i = 1, ... ,n-1 with S0=X0.

In general, the prefix sums problem is to compute the n
quantities with the following properties:

13

Sequential Prefix Sums

Example:

Given the operation + and
the set

X = {3,2,1,4,5,6,0} the
prefix sums of X will be

S = {3,5,6,10,15,21,21} as
illustrated in the figure.

This represents the
process of carrying out 7
additions.

14

Sequential Prefix Sums
s0 = a0

For i = 1 to n-1 do
si = si-1 + ai

Ts(n) = O(n)

15

Parallel Prefix
Sums Algorithm

16

a0 a1

p0

a2 a3

p1

a4 a5

p2

a6 a7

p3 p4 p5 p6 p7

0

i = 1

i = 2

s
1 =a

0
+ a

1

s
0 =a

0

s
2 =a

1
+ a

2

s
3 =a

2
+ a

3

s
4 =a

3
+ a

4

s
5 =a

4
+ a

5

s
6 =a

5
+ a

6

s
7 =a

6
+ a

7

p2 p3 p4 p5 p6 p7

s
2 =

s
3 =

s
4 =

s
5 =

s
6 =

s
7 =

p4 p5 p6 p7

s
4 =

s
5 =

s
6 =

s
7 =

18

a0 a1

p0

a2 a3

p1

a4 a5

p2

a6 a7

p3

a8 a9

p4

a10 a11

p5

a12 a13

p6

a14 a15

p7

0

i = 1

i = 2

i = 3

p8 p9
p10 p11 p12 p13 p14 p15

s
1 =a

0
+ a

1

s
0 =a

0

s
2 =a

1
+ a

2

s
3 =a

2
+ a

3

s
4 =a

3
+ a

4

s
5 =a

4
+ a

5

s
6 =a

5
+ a

6

s
7 =a

6
+ a

7

s
8 =a

7
+ a

8

s
9 =a

8
+ a

9

s
1

0 =a
9

+ a
1

0

s
1

1 =a
1

0
+ a

1
1

s
1

2 =a
1

1
+ a

1
2

s
1

3 =a
1

2
+ a

1
3

s
1

4 =a
1

3
+ a

1
4

s
1

5 =a
1

4
+ a

1
5

p2 p3 p4 p5 p6 p7 p8 p9
p10 p11 p12 p13 p14 p15

s
2 =

s
3 =

s
4 =

s
5 =

s
6 =

s
7 =

s
8 =

s
9 =

s
1

0 =

s
1

1 =

s
1

2 =

s
1

3 =

s
1

4 =

s
1

5 =

p4 p5 p6 p7 p8 p9
p10 p11 p12 p13 p14 p15

s
4 =

s
5 =

s
6 =

s
7 =

s
8 =

s
9 =

s
1

0 =

s
1

1 =

s
1

2 =

s
1

3 =

s
1

4 =

s
1

5 =

p8 p9
p10 p11 p12 p13 p14 p15

s
8 =

s
9 =

s
1

0 =

s
1

1 =

s
1

2 =

s
1

3 =

s
1

4 =

s
1

5 =

Parallel Prefix Sums Algorithm
For j = 0 to j < n do in parallel

Pj: s[j] = a[j]

End par

For i = 0 to i < log(n) do

For j = 2i to j < n do in parallel

Pj: s[j] = s[j-2i]+ s[j]

End par

End For

19

Parallel Prefix Sums Algorithm
In general, instances of size n of P can be solved in parallel time
Tpar = O(logn)

speedup is S(n) = Tseq(n) / Tpar(n) = O(n/logn).

Cost C(n) = n*O(logn) = O(nlogn)

E(n) = Tseq(n) / C(n) = O(n / (nlogn)) = O(1/logn) < 1

20

?

21

